2024
Reizinger, P., Ujváry, S., Mészáros, A., Kerekes, A., Brendel, W., Huszár, F.
Position: Understanding LLMs Requires More Than Statistical Generalization
Proceedings of the 41st International Conference on Machine Learning (ICML), 235, pages: 42365-42390, Proceedings of Machine Learning Research, (Editors: Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix), PMLR, July 2024 (conference)
2023
Brady*, J., Zimmermann*, R. S., Sharma, Y., Schölkopf, B., von Kügelen, J., Brendel, W.
Provably Learning Object-Centric Representations
Proceedings of the 40th International Conference on Machine Learning (ICML), 202, pages: 3038-3062, Proceedings of Machine Learning Research, (Editors: A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato and J. Scarlett), JMLR, Cambridge, MA, July 2023, *equal contribution (conference)
Keurti, H., Reizinger, P., Schölkopf, B., Brendel, W.
Desiderata for Representation Learning from Identifiability, Disentanglement, and Group-Structuredness
2nd Annual Topology, Algebra, and Geometry in Machine Learning (TAG) at ICML 2023, July 2023 (conference)
2022
Reizinger*, P., Gresele*, L., Brady*, J., von Kügelgen, J., Zietlow, D., Schölkopf, B., Martius, G., Brendel, W., Besserve, M.
Embrace the Gap: VAEs Perform Independent Mechanism Analysis
Advances in Neural Information Processing Systems (NeurIPS 2022), 35, pages: 12040-12057, (Editors: S. Koyejo and S. Mohamed and A. Agarwal and D. Belgrave and K. Cho and A. Oh), Curran Associates, Inc., 36th Annual Conference on Neural Information Processing Systems, December 2022, *equal first authorship (conference)
Rusak, Evgenia, Schneider, Steffen, Gehler, Peter Vincent, Bringmann, Oliver, Brendel, Wieland, Bethge, Matthias
ImageNet-D: A new challenging robustness dataset inspired by domain adaptation
In ICML 2022 Shift Happens Workshop, 2022 (inproceedings)
2021
Schott, Lukas, von Kügelgen, Julius, Träuble, Frederik, Gehler, Peter, Russell, Chris, Bethge, Matthias, Schölkopf, Bernhard, Locatello, Francesco, Brendel, Wieland
Visual representation learning does not generalize strongly within the same domain
In Tenth International Conference on Learning Representations (ICLR 2022), 2021 (inproceedings)
Zimmermann, Roland S, Sharma, Yash, Schneider, Steffen, Bethge, Matthias, Brendel, Wieland
Contrastive Learning Inverts the Data Generating Process
In International Conference on Machine Learning (ICML 2021), 2021 (inproceedings)
von Kügelgen, Julius, Sharma, Yash, Gresele, Luigi, Brendel, Wieland, Schölkopf, Bernhard, Besserve, Michel, Locatello, Francesco
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style
In 35th Conference on Neural Information Processing Systems (NeurIPS), 2021 (inproceedings)
Pintor, Maura, Roli, Fabio, Brendel, Wieland, Biggio, Battista
Fast Minimum-norm Adversarial Attacks through Adaptive Norm Constraints
In 35th Conference on Neural Information Processing Systems (NeurIPS), 2021 (inproceedings)
Geirhos, Robert, Narayanappa, Kantharaju, Mitzkus, Benjamin, Thieringer, Tizian, Bethge, Matthias, Wichmann, Felix A, Brendel, Wieland
Partial success in closing the gap between human and machine vision
In 35th Conference on Neural Information Processing Systems (NeurIPS), 2021 (inproceedings)
Zimmermann, Roland S, Borowski, Judy, Geirhos, Robert, Bethge, Matthias, Wallis, Thomas SA, Brendel, Wieland
How Well do Feature Visualizations Support Causal Understanding of CNN Activations?
In 35th Conference on Neural Information Processing Systems (NeurIPS), 2021 (inproceedings)
2020
Klindt, David, Schott, Lukas, Sharma, Yash, Ustyuzhaninov, Ivan, Brendel, Wieland, Bethge, Matthias, Paiton, Dylan
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding
In International Conference on Learning Representations (ICLR), 2020 (inproceedings)
Borowski, Judy, Zimmermann, Roland S, Schepers, Judith, Geirhos, Robert, Wallis, Thomas SA, Bethge, Matthias, Brendel, Wieland
Exemplary Natural Images Explain CNN Activations Better than Feature Visualizations
In International Conference on Learning Representations (ICLR 2021), 2020 (inproceedings)
Tramer, Florian, Carlini, Nicholas, Brendel, Wieland, Madry, Aleksander
On adaptive attacks to adversarial example defenses
In 34th Conference on Neural Information Processing Systems (NeurIPS), 2020 (inproceedings)
Rusak, Evgenia, Schott, Lukas, Zimmermann, Roland, Bitterwolf, Julian, Bringmann, Oliver, Bethge, Matthias, Brendel, Wieland
Increasing the robustness of DNNs against image corruptions by playing the Game of Noise
In European Conference on Computer Vision (oral), 2020 (inproceedings)
Rusak, Evgenia, Schott, Lukas, Zimmermann, Roland S, Bitterwolf, Julian, Bringmann, Oliver, Bethge, Matthias, Brendel, Wieland
A simple way to make neural networks robust against diverse image corruptions
In European Conference on Computer Vision, pages: 53-69, 2020 (inproceedings)
Schneider, Steffen, Rusak, Evgenia, Eck, Luisa, Bringmann, Oliver, Brendel, Wieland, Bethge, Matthias
Improving robustness against common corruptions by covariate shift adaptation
In 34th Conference on Neural Information Processing Systems (NeurIPS), 2020 (inproceedings)
Geirhos, Robert, Narayanappa, Kantharaju, Mitzkus, Benjamin, Bethge, Matthias, Wichmann, Felix A, Brendel, Wieland
On the surprising similarities between supervised and self-supervised models
In Shared Visual Representations in Humans & Machines Workshop (NeurIPS 2020), 2020 (inproceedings)
Geirhos, Robert, Jacobsen, Jörn-Henrik, Michaelis, Claudio, Zemel, Richard, Brendel, Wieland, Bethge, Matthias, Wichmann, Felix A
Unintended cue learning: Lessons for deep learning from experimental psychology
In 20th Annual Meeting of the Vision Sciences Society (VSS 2020), 652-652, 2020 (inproceedings)
2019
Michaelis, Claudio, Mitzkus, Benjamin, Geirhos, Robert, Rusak, Evgenia, Bringmann, Oliver, Ecker, Alexander S, Bethge, Matthias, Brendel, Wieland
Benchmarking robustness in object detection: Autonomous driving when winter is coming
In NeurIPS 2019 Workshop on Machine Learning for Autonomous Driving, 2019 (inproceedings)
Li, Zhe, Brendel, Wieland, Walker, Edgar, Cobos, Erick, Muhammad, Taliah, Reimer, Jacob, Bethge, Matthias, Sinz, Fabian, Pitkow, Zachary, Tolias, Andreas
Learning from brains how to regularize machines
In 33rd Conference on Neural Information Processing Systems (NeurIPS), pages: 9525-9535, 2019 (inproceedings)
Brendel, Wieland, Bethge, Matthias
Approximating cnns with bag-of-local-features models works surprisingly well on imagenet
In Seventh International Conference on Learning Representations (ICLR 2019), 2019 (inproceedings)
Brendel, Wieland, Rauber, Jonas, Kümmerer, Matthias, Ustyuzhaninov, Ivan, Bethge, Matthias
Accurate, reliable and fast robustness evaluation
In 33rd Conference on Neural Information Processing Systems (NeurIPS), pages: 12841-12851, 2019 (inproceedings)
2018
Geirhos, Robert, Rubisch, Patricia, Michaelis, Claudio, Bethge, Matthias, Wichmann, Felix A, Brendel, Wieland
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
In Seventh International Conference on Learning Representations (ICLR 2019), 2018 (inproceedings)
Schott, Lukas, Rauber, Jonas, Bethge, Matthias, Brendel, Wieland
Towards the first adversarially robust neural network model on MNIST
In Seventh International Conference on Learning Representations (ICLR 2019), 2018 (inproceedings)
2017
Brendel, Wieland, Rauber, Jonas, Bethge, Matthias
Decision-based adversarial attacks: Reliable attacks against black-box machine learning models
In Sixth International Conference on Learning Representations (ICLR 2018), 2017 (inproceedings)
Ustyuzhaninov, Ivan, Brendel, Wieland, Gatys, Leon A, Bethge, Matthias
What does it take to generate natural textures?
In International Conference on Learning Representations (ICLR), 2017 (inproceedings)
Rauber, Jonas, Brendel, Wieland, Bethge, Matthias
Foolbox v0. 8.0: A python toolbox to benchmark the robustness of machine learning models
In Reliable Machine Learning in the Wild Workshop, 34th International Conference on Machine Learning (ICML), 5, 2017 (inproceedings)
2016
Boettcher, A, Brendel, W, Bethge, M
Large scale blind source separation
In Bernstein Conference 2016, pages: 118-119, 2016 (inproceedings)
2014
Vertechi, Pietro, Brendel, Wieland, Machens, Christian K
Unsupervised learning of an efficient short-term memory network
In 28th Conference on Neural Information Processing Systems (NeurIPS), pages: 3653-3661, 2014 (inproceedings)
2011
Brendel, Wieland, Romo, Ranulfo, Machens, Christian K
Demixed principal component analysis
In Advances in Neural Information Processing Systems 24 (NIPS 2011), pages: 2654-2662, 2011 (inproceedings)
Reizinger, Patrik, Sharma, Yash, Bethge, Matthias, Schölkopf, Bernhard, Huszár, Ferenc, Brendel, Wieland
Multivariable Causal Discovery with General Nonlinear Relationships
In UAI 2022 Workshop on Causal Representation Learning (inproceedings)