2024
Reizinger, P., Ujváry, S., Mészáros, A., Kerekes, A., Brendel, W., Huszár, F.
Position: Understanding LLMs Requires More Than Statistical Generalization
Proceedings of the 41st International Conference on Machine Learning (ICML), 235, pages: 42365-42390, Proceedings of Machine Learning Research, (Editors: Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix), PMLR, July 2024 (conference)
2023
Brady*, J., Zimmermann*, R. S., Sharma, Y., Schölkopf, B., von Kügelen, J., Brendel, W.
Provably Learning Object-Centric Representations
Proceedings of the 40th International Conference on Machine Learning (ICML), 202, pages: 3038-3062, Proceedings of Machine Learning Research, (Editors: A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato and J. Scarlett), JMLR, Cambridge, MA, July 2023, *equal contribution (conference)
Keurti, H., Reizinger, P., Schölkopf, B., Brendel, W.
Desiderata for Representation Learning from Identifiability, Disentanglement, and Group-Structuredness
2nd Annual Topology, Algebra, and Geometry in Machine Learning (TAG) at ICML 2023, July 2023 (conference)
Reizinger, P., Sharma, Y., Bethge, M., Schölkopf, B., Huszár, F., Brendel, W.
Jacobian-based Causal Discovery with Nonlinear ICA
Transactions on Machine Learning Research, April 2023 (article)
2022
Reizinger*, P., Gresele*, L., Brady*, J., von Kügelgen, J., Zietlow, D., Schölkopf, B., Martius, G., Brendel, W., Besserve, M.
Embrace the Gap: VAEs Perform Independent Mechanism Analysis
Advances in Neural Information Processing Systems (NeurIPS 2022), 35, pages: 12040-12057, (Editors: S. Koyejo and S. Mohamed and A. Agarwal and D. Belgrave and K. Cho and A. Oh), Curran Associates, Inc., 36th Annual Conference on Neural Information Processing Systems, December 2022, *equal first authorship (conference)
Zimmermann, Roland S, Brendel, Wieland, Tramer, Florian, Carlini, Nicholas
Increasing Confidence in Adversarial Robustness Evaluations
arXiv preprint arXiv:2206.13991, 2022 (article)
Reizinger, Patrik, Gresele, Luigi, Brady, Jack, von Kügelgen, Julius, Zietlow, Dominik, Schölkopf, Bernhard, Martius, Georg, Brendel, Wieland, Besserve, Michel
Embrace the Gap: VAEs Perform Independent Mechanism Analysis
arXiv preprint arXiv:2206.02416, 2022 (article)
Rusak, Evgenia, Schneider, Steffen, Gehler, Peter Vincent, Bringmann, Oliver, Brendel, Wieland, Bethge, Matthias
ImageNet-D: A new challenging robustness dataset inspired by domain adaptation
In ICML 2022 Shift Happens Workshop, 2022 (inproceedings)
Li, Zhe, Caro, Josue Ortega, Rusak, Evgenia, Brendel, Wieland, Bethge, Matthias, Anselmi, Fabio, Patel, Ankit B, Tolias, Andreas S, Pitkow, Xaq
Robust deep learning object recognition models rely on low frequency information in natural images
bioRxiv, Cold Spring Harbor Laboratory, 2022 (article)
2021
Schott, Lukas, von Kügelgen, Julius, Träuble, Frederik, Gehler, Peter, Russell, Chris, Bethge, Matthias, Schölkopf, Bernhard, Locatello, Francesco, Brendel, Wieland
Visual representation learning does not generalize strongly within the same domain
In Tenth International Conference on Learning Representations (ICLR 2022), 2021 (inproceedings)
Zimmermann, Roland S, Sharma, Yash, Schneider, Steffen, Bethge, Matthias, Brendel, Wieland
Contrastive Learning Inverts the Data Generating Process
In International Conference on Machine Learning (ICML 2021), 2021 (inproceedings)
von Kügelgen, Julius, Sharma, Yash, Gresele, Luigi, Brendel, Wieland, Schölkopf, Bernhard, Besserve, Michel, Locatello, Francesco
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style
In 35th Conference on Neural Information Processing Systems (NeurIPS), 2021 (inproceedings)
Pintor, Maura, Roli, Fabio, Brendel, Wieland, Biggio, Battista
Fast Minimum-norm Adversarial Attacks through Adaptive Norm Constraints
In 35th Conference on Neural Information Processing Systems (NeurIPS), 2021 (inproceedings)
Geirhos, Robert, Narayanappa, Kantharaju, Mitzkus, Benjamin, Thieringer, Tizian, Bethge, Matthias, Wichmann, Felix A, Brendel, Wieland
Partial success in closing the gap between human and machine vision
In 35th Conference on Neural Information Processing Systems (NeurIPS), 2021 (inproceedings)
Funke, Christina M, Borowski, Judy, Stosio, Karolina, Brendel, Wieland, Wallis, Thomas SA, Bethge, Matthias
Five points to check when comparing visual perception in humans and machines
Journal of Vision, 21(3):16-16, The Association for Research in Vision and Ophthalmology, 2021 (article)
Zimmermann, Roland S, Borowski, Judy, Geirhos, Robert, Bethge, Matthias, Wallis, Thomas SA, Brendel, Wieland
How Well do Feature Visualizations Support Causal Understanding of CNN Activations?
In 35th Conference on Neural Information Processing Systems (NeurIPS), 2021 (inproceedings)
Rusak, Evgenia, Schneider, Steffen, Pachitariu, George, Eck, Luisa, Gehler, Peter Vincent, Bringmann, Oliver, Brendel, Wieland, Bethge, Matthias
If your data distribution shifts, use self-learning
2021 (article)
Rusak, Evgenia, Schneider, Steffen, Gehler, Peter, Bringmann, Oliver, Brendel, Wieland, Bethge, Matthias
Adapting ImageNet-scale models to complex distribution shifts with self-learning
arXiv preprint arXiv:2104.12928, 2021 (article)
2020
Klindt, David, Schott, Lukas, Sharma, Yash, Ustyuzhaninov, Ivan, Brendel, Wieland, Bethge, Matthias, Paiton, Dylan
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding
In International Conference on Learning Representations (ICLR), 2020 (inproceedings)
Borowski, Judy, Zimmermann, Roland S, Schepers, Judith, Geirhos, Robert, Wallis, Thomas SA, Bethge, Matthias, Brendel, Wieland
Exemplary Natural Images Explain CNN Activations Better than Feature Visualizations
In International Conference on Learning Representations (ICLR 2021), 2020 (inproceedings)
Schneider123, Steffen, Krishna, Shubham, Eck, Luisa, Brendel, Wieland, Mathis, Mackenzie W, Bethge, Matthias
Generalized Invariant Risk Minimization: relating adaptation and invariant representation learning
2020 (article)
Brendel, Wieland, Bourdoukan, Ralph, Vertechi, Pietro, Machens, Christian K, Denéve, Sophie
Learning to represent signals spike by spike
PLoS computational biology, 16(3):e1007692, Public Library of Science San Francisco, CA USA, 2020 (article)
Tramer, Florian, Carlini, Nicholas, Brendel, Wieland, Madry, Aleksander
On adaptive attacks to adversarial example defenses
In 34th Conference on Neural Information Processing Systems (NeurIPS), 2020 (inproceedings)
Rauber, Jonas, Bethge, Matthias, Brendel, Wieland
EagerPy: Writing code that works natively with PyTorch, TensorFlow, JAX, and NumPy
arXiv preprint arXiv:2008.04175, 2020 (article)
Ortega Caro, Josue, Ju, Yilong, Pyle, Ryan, Dey, Sourav, Brendel, Wieland, Anselmi, Fabio, Patel, Ankit
Local Convolutions Cause an Implicit Bias towards High Frequency Adversarial Examples
arXiv e-prints, pages: arXiv-2006, 2020 (article)
Rusak, Evgenia, Schott, Lukas, Zimmermann, Roland, Bitterwolf, Julian, Bringmann, Oliver, Bethge, Matthias, Brendel, Wieland
Increasing the robustness of DNNs against image corruptions by playing the Game of Noise
In European Conference on Computer Vision (oral), 2020 (inproceedings)
Geirhos, Robert, Jacobsen, Jörn-Henrik, Michaelis, Claudio, Zemel, Richard, Brendel, Wieland, Bethge, Matthias, Wichmann, Felix A
Shortcut Learning in Deep Neural Networks
Nature Machine Intelligence volume 2, pages665--673(2020), 2020 (article)
Rusak, Evgenia, Schott, Lukas, Zimmermann, Roland S, Bitterwolf, Julian, Bringmann, Oliver, Bethge, Matthias, Brendel, Wieland
A simple way to make neural networks robust against diverse image corruptions
In European Conference on Computer Vision, pages: 53-69, 2020 (inproceedings)
Caro, Josue Ortega, Ju, Yilong, Pyle, Ryan, Dey, Sourav, Brendel, Wieland, Anselmi, Fabio, Patel, Ankit
Local convolutions cause an implicit bias towards high frequency adversarial examples
arXiv preprint arXiv:2006.11440, 2020 (article)
Weis, Marissa A, Chitta, Kashyap, Sharma, Yash, Brendel, Wieland, Bethge, Matthias, Geiger, Andreas, Ecker, Alexander S
Unmasking the inductive biases of unsupervised object representations for video sequences
Journal of Machine Learning Research (JMLR), 2020 (article)
Rauber, Jonas, Zimmermann, Roland, Bethge, Matthias, Brendel, Wieland
Foolbox native: Fast adversarial attacks to benchmark the robustness of machine learning models in pytorch, tensorflow, and jax
Journal of Open Source Software, 5(53):2607, 2020 (article)
Brendel, Wieland, Rauber, Jonas, Kurakin, Alexey, Papernot, Nicolas, Veliqi, Behar, Mohanty, Sharada P, Laurent, Florian, Salathé, Marcel, Bethge, Matthias, Yu, Yaodong, others
Adversarial vision challenge
The NeurIPS'18 Competition, pages: 129-153, Springer, Cham, 2020 (misc)
Schneider, Steffen, Rusak, Evgenia, Eck, Luisa, Bringmann, Oliver, Brendel, Wieland, Bethge, Matthias
Improving robustness against common corruptions by covariate shift adaptation
In 34th Conference on Neural Information Processing Systems (NeurIPS), 2020 (inproceedings)
Geirhos, Robert, Narayanappa, Kantharaju, Mitzkus, Benjamin, Bethge, Matthias, Wichmann, Felix A, Brendel, Wieland
On the surprising similarities between supervised and self-supervised models
In Shared Visual Representations in Humans & Machines Workshop (NeurIPS 2020), 2020 (inproceedings)
Geirhos, Robert, Jacobsen, Jörn-Henrik, Michaelis, Claudio, Zemel, Richard, Brendel, Wieland, Bethge, Matthias, Wichmann, Felix A
Unintended cue learning: Lessons for deep learning from experimental psychology
In 20th Annual Meeting of the Vision Sciences Society (VSS 2020), 652-652, 2020 (inproceedings)
2019
Michaelis, Claudio, Mitzkus, Benjamin, Geirhos, Robert, Rusak, Evgenia, Bringmann, Oliver, Ecker, Alexander S, Bethge, Matthias, Brendel, Wieland
Benchmarking robustness in object detection: Autonomous driving when winter is coming
In NeurIPS 2019 Workshop on Machine Learning for Autonomous Driving, 2019 (inproceedings)
Li, Zhe, Brendel, Wieland, Walker, Edgar, Cobos, Erick, Muhammad, Taliah, Reimer, Jacob, Bethge, Matthias, Sinz, Fabian, Pitkow, Zachary, Tolias, Andreas
Learning from brains how to regularize machines
In 33rd Conference on Neural Information Processing Systems (NeurIPS), pages: 9525-9535, 2019 (inproceedings)
Brendel, Wieland, Bethge, Matthias
Approximating cnns with bag-of-local-features models works surprisingly well on imagenet
In Seventh International Conference on Learning Representations (ICLR 2019), 2019 (inproceedings)
Carlini, Nicholas, Athalye, Anish, Papernot, Nicolas, Brendel, Wieland, Rauber, Jonas, Tsipras, Dimitris, Goodfellow, Ian, Madry, Aleksander, Kurakin, Alexey
On evaluating adversarial robustness
arXiv preprint arXiv:1902.06705, 2019 (article)
Brendel, Wieland, Rauber, Jonas, Kümmerer, Matthias, Ustyuzhaninov, Ivan, Bethge, Matthias
Accurate, reliable and fast robustness evaluation
In 33rd Conference on Neural Information Processing Systems (NeurIPS), pages: 12841-12851, 2019 (inproceedings)
2018
Geirhos, Robert, Rubisch, Patricia, Michaelis, Claudio, Bethge, Matthias, Wichmann, Felix A, Brendel, Wieland
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
In Seventh International Conference on Learning Representations (ICLR 2019), 2018 (inproceedings)
Böttcher, Alexander, Brendel, Wieland, Englitz, Bernhard, Bethge, Matthias
Trace your sources in large-scale data: one ring to find them all
arXiv preprint arXiv:1803.08882, 2018 (article)
Schott, Lukas, Rauber, Jonas, Bethge, Matthias, Brendel, Wieland
Towards the first adversarially robust neural network model on MNIST
In Seventh International Conference on Learning Representations (ICLR 2019), 2018 (inproceedings)
Funke, Christina, Borowski, Judy, Wallis, Thomas, Brendel, Wieland, Ecker, Alexander, Bethge, Matthias
Comparing the ability of humans and DNNs to recognise closed contours in cluttered images
Journal of Vision, 18(10):800-800, The Association for Research in Vision and Ophthalmology, 2018 (article)
Oladazimi, Maysam, Brendel, Wieland, Schwarz, Cornelius
Biomechanical texture coding in rat whiskers
Scientific reports, 8(1):1-12, Nature Publishing Group, 2018 (article)
Ustyuzhaninov, Ivan, Michaelis, Claudio, Brendel, Wieland, Bethge, Matthias
One-shot texture segmentation
arXiv preprint arXiv:1807.02654, 2018 (article)
2017
Brendel, Wieland, Bethge, Matthias
Comment on" Biologically inspired protection of deep networks from adversarial attacks"
arXiv preprint arXiv:1704.01547, 2017 (article)
Brendel, Wieland, Rauber, Jonas, Bethge, Matthias
Decision-based adversarial attacks: Reliable attacks against black-box machine learning models
In Sixth International Conference on Learning Representations (ICLR 2018), 2017 (inproceedings)
Ustyuzhaninov, Ivan, Brendel, Wieland, Gatys, Leon A, Bethge, Matthias
What does it take to generate natural textures?
In International Conference on Learning Representations (ICLR), 2017 (inproceedings)
Rauber, Jonas, Brendel, Wieland, Bethge, Matthias
Foolbox v0. 8.0: A python toolbox to benchmark the robustness of machine learning models
In Reliable Machine Learning in the Wild Workshop, 34th International Conference on Machine Learning (ICML), 5, 2017 (inproceedings)