Intelligent Systems


2024


no image
Position: Understanding LLMs Requires More Than Statistical Generalization

Reizinger, P., Ujváry, S., Mészáros, A., Kerekes, A., Brendel, W., Huszár, F.

Proceedings of the 41st International Conference on Machine Learning (ICML), 235, pages: 42365-42390, Proceedings of Machine Learning Research, (Editors: Salakhutdinov, Ruslan and Kolter, Zico and Heller, Katherine and Weller, Adrian and Oliver, Nuria and Scarlett, Jonathan and Berkenkamp, Felix), PMLR, July 2024 (conference)

arXiv link (url) [BibTex]

2024

arXiv link (url) [BibTex]

2023


no image
Provably Learning Object-Centric Representations

Brady*, J., Zimmermann*, R. S., Sharma, Y., Schölkopf, B., von Kügelen, J., Brendel, W.

Proceedings of the 40th International Conference on Machine Learning (ICML), 202, pages: 3038-3062, Proceedings of Machine Learning Research, (Editors: A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato and J. Scarlett), JMLR, Cambridge, MA, July 2023, *equal contribution (conference)

link (url) [BibTex]

2023

link (url) [BibTex]


no image
Desiderata for Representation Learning from Identifiability, Disentanglement, and Group-Structuredness

Keurti, H., Reizinger, P., Schölkopf, B., Brendel, W.

2nd Annual Topology, Algebra, and Geometry in Machine Learning (TAG) at ICML 2023, July 2023 (conference)

link (url) [BibTex]

link (url) [BibTex]


no image
Jacobian-based Causal Discovery with Nonlinear ICA

Reizinger, P., Sharma, Y., Bethge, M., Schölkopf, B., Huszár, F., Brendel, W.

Transactions on Machine Learning Research, April 2023 (article)

link (url) [BibTex]

link (url) [BibTex]

2022


Embrace the Gap: VAEs Perform Independent Mechanism Analysis
Embrace the Gap: VAEs Perform Independent Mechanism Analysis

Reizinger*, P., Gresele*, L., Brady*, J., von Kügelgen, J., Zietlow, D., Schölkopf, B., Martius, G., Brendel, W., Besserve, M.

Advances in Neural Information Processing Systems (NeurIPS 2022), 35, pages: 12040-12057, (Editors: S. Koyejo and S. Mohamed and A. Agarwal and D. Belgrave and K. Cho and A. Oh), Curran Associates, Inc., 36th Annual Conference on Neural Information Processing Systems, December 2022, *equal first authorship (conference)

Arxiv PDF link (url) [BibTex]

2022

Arxiv PDF link (url) [BibTex]


no image
Increasing Confidence in Adversarial Robustness Evaluations

Zimmermann, Roland S, Brendel, Wieland, Tramer, Florian, Carlini, Nicholas

arXiv preprint arXiv:2206.13991, 2022 (article)

[BibTex]

[BibTex]


no image
Embrace the Gap: VAEs Perform Independent Mechanism Analysis

Reizinger, Patrik, Gresele, Luigi, Brady, Jack, von Kügelgen, Julius, Zietlow, Dominik, Schölkopf, Bernhard, Martius, Georg, Brendel, Wieland, Besserve, Michel

arXiv preprint arXiv:2206.02416, 2022 (article)

[BibTex]

[BibTex]


no image
ImageNet-D: A new challenging robustness dataset inspired by domain adaptation

Rusak, Evgenia, Schneider, Steffen, Gehler, Peter Vincent, Bringmann, Oliver, Brendel, Wieland, Bethge, Matthias

In ICML 2022 Shift Happens Workshop, 2022 (inproceedings)

[BibTex]

[BibTex]


no image
Robust deep learning object recognition models rely on low frequency information in natural images

Li, Zhe, Caro, Josue Ortega, Rusak, Evgenia, Brendel, Wieland, Bethge, Matthias, Anselmi, Fabio, Patel, Ankit B, Tolias, Andreas S, Pitkow, Xaq

bioRxiv, Cold Spring Harbor Laboratory, 2022 (article)

[BibTex]

[BibTex]

2021


no image
Visual representation learning does not generalize strongly within the same domain

Schott, Lukas, von Kügelgen, Julius, Träuble, Frederik, Gehler, Peter, Russell, Chris, Bethge, Matthias, Schölkopf, Bernhard, Locatello, Francesco, Brendel, Wieland

In Tenth International Conference on Learning Representations (ICLR 2022), 2021 (inproceedings)

[BibTex]

2021

[BibTex]


no image
Contrastive Learning Inverts the Data Generating Process

Zimmermann, Roland S, Sharma, Yash, Schneider, Steffen, Bethge, Matthias, Brendel, Wieland

In International Conference on Machine Learning (ICML 2021), 2021 (inproceedings)

[BibTex]

[BibTex]


no image
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style

von Kügelgen, Julius, Sharma, Yash, Gresele, Luigi, Brendel, Wieland, Schölkopf, Bernhard, Besserve, Michel, Locatello, Francesco

In 35th Conference on Neural Information Processing Systems (NeurIPS), 2021 (inproceedings)

[BibTex]

[BibTex]


no image
Fast Minimum-norm Adversarial Attacks through Adaptive Norm Constraints

Pintor, Maura, Roli, Fabio, Brendel, Wieland, Biggio, Battista

In 35th Conference on Neural Information Processing Systems (NeurIPS), 2021 (inproceedings)

[BibTex]

[BibTex]


no image
Partial success in closing the gap between human and machine vision

Geirhos, Robert, Narayanappa, Kantharaju, Mitzkus, Benjamin, Thieringer, Tizian, Bethge, Matthias, Wichmann, Felix A, Brendel, Wieland

In 35th Conference on Neural Information Processing Systems (NeurIPS), 2021 (inproceedings)

[BibTex]

[BibTex]


no image
Five points to check when comparing visual perception in humans and machines

Funke, Christina M, Borowski, Judy, Stosio, Karolina, Brendel, Wieland, Wallis, Thomas SA, Bethge, Matthias

Journal of Vision, 21(3):16-16, The Association for Research in Vision and Ophthalmology, 2021 (article)

[BibTex]

[BibTex]


no image
How Well do Feature Visualizations Support Causal Understanding of CNN Activations?

Zimmermann, Roland S, Borowski, Judy, Geirhos, Robert, Bethge, Matthias, Wallis, Thomas SA, Brendel, Wieland

In 35th Conference on Neural Information Processing Systems (NeurIPS), 2021 (inproceedings)

[BibTex]

[BibTex]


no image
If your data distribution shifts, use self-learning

Rusak, Evgenia, Schneider, Steffen, Pachitariu, George, Eck, Luisa, Gehler, Peter Vincent, Bringmann, Oliver, Brendel, Wieland, Bethge, Matthias

2021 (article)

[BibTex]

[BibTex]


no image
Adapting ImageNet-scale models to complex distribution shifts with self-learning

Rusak, Evgenia, Schneider, Steffen, Gehler, Peter, Bringmann, Oliver, Brendel, Wieland, Bethge, Matthias

arXiv preprint arXiv:2104.12928, 2021 (article)

[BibTex]

[BibTex]

2020


no image
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding

Klindt, David, Schott, Lukas, Sharma, Yash, Ustyuzhaninov, Ivan, Brendel, Wieland, Bethge, Matthias, Paiton, Dylan

In International Conference on Learning Representations (ICLR), 2020 (inproceedings)

[BibTex]

2020

[BibTex]


no image
Exemplary Natural Images Explain CNN Activations Better than Feature Visualizations

Borowski, Judy, Zimmermann, Roland S, Schepers, Judith, Geirhos, Robert, Wallis, Thomas SA, Bethge, Matthias, Brendel, Wieland

In International Conference on Learning Representations (ICLR 2021), 2020 (inproceedings)

[BibTex]

[BibTex]


no image
Generalized Invariant Risk Minimization: relating adaptation and invariant representation learning

Schneider123, Steffen, Krishna, Shubham, Eck, Luisa, Brendel, Wieland, Mathis, Mackenzie W, Bethge, Matthias

2020 (article)

[BibTex]

[BibTex]


no image
Learning to represent signals spike by spike

Brendel, Wieland, Bourdoukan, Ralph, Vertechi, Pietro, Machens, Christian K, Denéve, Sophie

PLoS computational biology, 16(3):e1007692, Public Library of Science San Francisco, CA USA, 2020 (article)

[BibTex]

[BibTex]


no image
On adaptive attacks to adversarial example defenses

Tramer, Florian, Carlini, Nicholas, Brendel, Wieland, Madry, Aleksander

In 34th Conference on Neural Information Processing Systems (NeurIPS), 2020 (inproceedings)

[BibTex]

[BibTex]


no image
EagerPy: Writing code that works natively with PyTorch, TensorFlow, JAX, and NumPy

Rauber, Jonas, Bethge, Matthias, Brendel, Wieland

arXiv preprint arXiv:2008.04175, 2020 (article)

[BibTex]

[BibTex]


no image
Local Convolutions Cause an Implicit Bias towards High Frequency Adversarial Examples

Ortega Caro, Josue, Ju, Yilong, Pyle, Ryan, Dey, Sourav, Brendel, Wieland, Anselmi, Fabio, Patel, Ankit

arXiv e-prints, pages: arXiv-2006, 2020 (article)

[BibTex]

[BibTex]


no image
Increasing the robustness of DNNs against image corruptions by playing the Game of Noise

Rusak, Evgenia, Schott, Lukas, Zimmermann, Roland, Bitterwolf, Julian, Bringmann, Oliver, Bethge, Matthias, Brendel, Wieland

In European Conference on Computer Vision (oral), 2020 (inproceedings)

[BibTex]

[BibTex]


no image
Shortcut Learning in Deep Neural Networks

Geirhos, Robert, Jacobsen, Jörn-Henrik, Michaelis, Claudio, Zemel, Richard, Brendel, Wieland, Bethge, Matthias, Wichmann, Felix A

Nature Machine Intelligence volume 2, pages665--673(2020), 2020 (article)

[BibTex]

[BibTex]


no image
A simple way to make neural networks robust against diverse image corruptions

Rusak, Evgenia, Schott, Lukas, Zimmermann, Roland S, Bitterwolf, Julian, Bringmann, Oliver, Bethge, Matthias, Brendel, Wieland

In European Conference on Computer Vision, pages: 53-69, 2020 (inproceedings)

[BibTex]

[BibTex]


no image
Local convolutions cause an implicit bias towards high frequency adversarial examples

Caro, Josue Ortega, Ju, Yilong, Pyle, Ryan, Dey, Sourav, Brendel, Wieland, Anselmi, Fabio, Patel, Ankit

arXiv preprint arXiv:2006.11440, 2020 (article)

[BibTex]

[BibTex]


no image
Unmasking the inductive biases of unsupervised object representations for video sequences

Weis, Marissa A, Chitta, Kashyap, Sharma, Yash, Brendel, Wieland, Bethge, Matthias, Geiger, Andreas, Ecker, Alexander S

Journal of Machine Learning Research (JMLR), 2020 (article)

[BibTex]

[BibTex]


no image
Foolbox native: Fast adversarial attacks to benchmark the robustness of machine learning models in pytorch, tensorflow, and jax

Rauber, Jonas, Zimmermann, Roland, Bethge, Matthias, Brendel, Wieland

Journal of Open Source Software, 5(53):2607, 2020 (article)

[BibTex]

[BibTex]


no image
Adversarial vision challenge

Brendel, Wieland, Rauber, Jonas, Kurakin, Alexey, Papernot, Nicolas, Veliqi, Behar, Mohanty, Sharada P, Laurent, Florian, Salathé, Marcel, Bethge, Matthias, Yu, Yaodong, others

The NeurIPS'18 Competition, pages: 129-153, Springer, Cham, 2020 (misc)

[BibTex]

[BibTex]


no image
Improving robustness against common corruptions by covariate shift adaptation

Schneider, Steffen, Rusak, Evgenia, Eck, Luisa, Bringmann, Oliver, Brendel, Wieland, Bethge, Matthias

In 34th Conference on Neural Information Processing Systems (NeurIPS), 2020 (inproceedings)

[BibTex]

[BibTex]


no image
On the surprising similarities between supervised and self-supervised models

Geirhos, Robert, Narayanappa, Kantharaju, Mitzkus, Benjamin, Bethge, Matthias, Wichmann, Felix A, Brendel, Wieland

In Shared Visual Representations in Humans & Machines Workshop (NeurIPS 2020), 2020 (inproceedings)

[BibTex]

[BibTex]


no image
Unintended cue learning: Lessons for deep learning from experimental psychology

Geirhos, Robert, Jacobsen, Jörn-Henrik, Michaelis, Claudio, Zemel, Richard, Brendel, Wieland, Bethge, Matthias, Wichmann, Felix A

In 20th Annual Meeting of the Vision Sciences Society (VSS 2020), 652-652, 2020 (inproceedings)

[BibTex]

[BibTex]

2019


no image
Benchmarking robustness in object detection: Autonomous driving when winter is coming

Michaelis, Claudio, Mitzkus, Benjamin, Geirhos, Robert, Rusak, Evgenia, Bringmann, Oliver, Ecker, Alexander S, Bethge, Matthias, Brendel, Wieland

In NeurIPS 2019 Workshop on Machine Learning for Autonomous Driving, 2019 (inproceedings)

[BibTex]

2019

[BibTex]


no image
Learning from brains how to regularize machines

Li, Zhe, Brendel, Wieland, Walker, Edgar, Cobos, Erick, Muhammad, Taliah, Reimer, Jacob, Bethge, Matthias, Sinz, Fabian, Pitkow, Zachary, Tolias, Andreas

In 33rd Conference on Neural Information Processing Systems (NeurIPS), pages: 9525-9535, 2019 (inproceedings)

[BibTex]

[BibTex]


no image
Approximating cnns with bag-of-local-features models works surprisingly well on imagenet

Brendel, Wieland, Bethge, Matthias

In Seventh International Conference on Learning Representations (ICLR 2019), 2019 (inproceedings)

[BibTex]

[BibTex]


no image
On evaluating adversarial robustness

Carlini, Nicholas, Athalye, Anish, Papernot, Nicolas, Brendel, Wieland, Rauber, Jonas, Tsipras, Dimitris, Goodfellow, Ian, Madry, Aleksander, Kurakin, Alexey

arXiv preprint arXiv:1902.06705, 2019 (article)

[BibTex]

[BibTex]


no image
Accurate, reliable and fast robustness evaluation

Brendel, Wieland, Rauber, Jonas, Kümmerer, Matthias, Ustyuzhaninov, Ivan, Bethge, Matthias

In 33rd Conference on Neural Information Processing Systems (NeurIPS), pages: 12841-12851, 2019 (inproceedings)

[BibTex]

[BibTex]

2018


no image
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness

Geirhos, Robert, Rubisch, Patricia, Michaelis, Claudio, Bethge, Matthias, Wichmann, Felix A, Brendel, Wieland

In Seventh International Conference on Learning Representations (ICLR 2019), 2018 (inproceedings)

[BibTex]

2018

[BibTex]


no image
Trace your sources in large-scale data: one ring to find them all

Böttcher, Alexander, Brendel, Wieland, Englitz, Bernhard, Bethge, Matthias

arXiv preprint arXiv:1803.08882, 2018 (article)

[BibTex]

[BibTex]


no image
Towards the first adversarially robust neural network model on MNIST

Schott, Lukas, Rauber, Jonas, Bethge, Matthias, Brendel, Wieland

In Seventh International Conference on Learning Representations (ICLR 2019), 2018 (inproceedings)

[BibTex]

[BibTex]


no image
Comparing the ability of humans and DNNs to recognise closed contours in cluttered images

Funke, Christina, Borowski, Judy, Wallis, Thomas, Brendel, Wieland, Ecker, Alexander, Bethge, Matthias

Journal of Vision, 18(10):800-800, The Association for Research in Vision and Ophthalmology, 2018 (article)

[BibTex]

[BibTex]


no image
Biomechanical texture coding in rat whiskers

Oladazimi, Maysam, Brendel, Wieland, Schwarz, Cornelius

Scientific reports, 8(1):1-12, Nature Publishing Group, 2018 (article)

[BibTex]

[BibTex]


no image
One-shot texture segmentation

Ustyuzhaninov, Ivan, Michaelis, Claudio, Brendel, Wieland, Bethge, Matthias

arXiv preprint arXiv:1807.02654, 2018 (article)

[BibTex]

[BibTex]

2017


no image
Comment on" Biologically inspired protection of deep networks from adversarial attacks"

Brendel, Wieland, Bethge, Matthias

arXiv preprint arXiv:1704.01547, 2017 (article)

[BibTex]

2017

[BibTex]


no image
Decision-based adversarial attacks: Reliable attacks against black-box machine learning models

Brendel, Wieland, Rauber, Jonas, Bethge, Matthias

In Sixth International Conference on Learning Representations (ICLR 2018), 2017 (inproceedings)

[BibTex]

[BibTex]


no image
What does it take to generate natural textures?

Ustyuzhaninov, Ivan, Brendel, Wieland, Gatys, Leon A, Bethge, Matthias

In International Conference on Learning Representations (ICLR), 2017 (inproceedings)

[BibTex]

[BibTex]


no image
Foolbox v0. 8.0: A python toolbox to benchmark the robustness of machine learning models

Rauber, Jonas, Brendel, Wieland, Bethge, Matthias

In Reliable Machine Learning in the Wild Workshop, 34th International Conference on Machine Learning (ICML), 5, 2017 (inproceedings)

[BibTex]

[BibTex]