2021
Schott, Lukas, von Kügelgen, Julius, Träuble, Frederik, Gehler, Peter, Russell, Chris, Bethge, Matthias, Schölkopf, Bernhard, Locatello, Francesco, Brendel, Wieland
Visual representation learning does not generalize strongly within the same domain
In Tenth International Conference on Learning Representations (ICLR 2022), 2021 (inproceedings)
Zimmermann, Roland S, Sharma, Yash, Schneider, Steffen, Bethge, Matthias, Brendel, Wieland
Contrastive Learning Inverts the Data Generating Process
In International Conference on Machine Learning (ICML 2021), 2021 (inproceedings)
von Kügelgen, Julius, Sharma, Yash, Gresele, Luigi, Brendel, Wieland, Schölkopf, Bernhard, Besserve, Michel, Locatello, Francesco
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style
In 35th Conference on Neural Information Processing Systems (NeurIPS), 2021 (inproceedings)
Pintor, Maura, Roli, Fabio, Brendel, Wieland, Biggio, Battista
Fast Minimum-norm Adversarial Attacks through Adaptive Norm Constraints
In 35th Conference on Neural Information Processing Systems (NeurIPS), 2021 (inproceedings)
Geirhos, Robert, Narayanappa, Kantharaju, Mitzkus, Benjamin, Thieringer, Tizian, Bethge, Matthias, Wichmann, Felix A, Brendel, Wieland
Partial success in closing the gap between human and machine vision
In 35th Conference on Neural Information Processing Systems (NeurIPS), 2021 (inproceedings)
Funke, Christina M, Borowski, Judy, Stosio, Karolina, Brendel, Wieland, Wallis, Thomas SA, Bethge, Matthias
Five points to check when comparing visual perception in humans and machines
Journal of Vision, 21(3):16-16, The Association for Research in Vision and Ophthalmology, 2021 (article)
Zimmermann, Roland S, Borowski, Judy, Geirhos, Robert, Bethge, Matthias, Wallis, Thomas SA, Brendel, Wieland
How Well do Feature Visualizations Support Causal Understanding of CNN Activations?
In 35th Conference on Neural Information Processing Systems (NeurIPS), 2021 (inproceedings)
Rusak, Evgenia, Schneider, Steffen, Pachitariu, George, Eck, Luisa, Gehler, Peter Vincent, Bringmann, Oliver, Brendel, Wieland, Bethge, Matthias
If your data distribution shifts, use self-learning
2021 (article)
Rusak, Evgenia, Schneider, Steffen, Gehler, Peter, Bringmann, Oliver, Brendel, Wieland, Bethge, Matthias
Adapting ImageNet-scale models to complex distribution shifts with self-learning
arXiv preprint arXiv:2104.12928, 2021 (article)